Investigating the Fragmentation of Excited Nuclear Systems

Jennifer Erchinger 2010 Cyclotron REU Advisor: Dr. Sherry Yennello

Nuclear Equation of State

- Equation of State (EoS)
- EoS for isospin asymmetric nuclear matter:

$E(\rho,\,\delta)=E(\rho,\,\delta=0)+E_{sym}(\rho)\delta^2+O(\delta^4)$

- baryon density $\rho = \rho_n + \rho_p$
- isospin asymmetry $\delta = (\rho_n \rho_p)/(\rho_n + \rho_p)$ • $\delta = (N-Z)/(N+Z)$
- energy per nucleon in symmetric nuclear matter E(ρ, δ = 0)
- nuclear symmetry energy E_{sym}(ρ)

Symmetry Energy

Symmetry Energy related to Isospin

Heavy Ion Collisions

Nuclear collision reactions...

⊤íme (fm∕c) = 1		leavy Ion Collisions	
11	10	9	8
7	6	5	4
3	2	1	0

Heavy Ion Collisions

 Detect the Z and A of most fragments with NIMROD, and free neutrons with the Neutron Ball

Comparing Identified Fragments

Comparing Identified Fragments

Comparing Identified Fragments

Evolution of Isoscaling

- System-to-System
 Isoscaling
 - Tsang at MSU, etc.
 - Sources are compound nuclei
 - Isoscaling with global alpha and global beta
 - Lines are parallel and evenly spaced, but do not align perfectly with points

Isostopic Scaling...It can get us to the symmetry energy

Ratio of isotopic yields

• Relation of
$$\alpha$$
 to E_{sym} (C_{sym}) or $rick = C \exp(N\alpha + Z\beta)$
 $Relation of \alpha$ to E_{sym} (C_{sym}) on stant $rick = \alpha + \mu_p/T$
 $rick = \alpha + \mu_p/T$

$$\alpha = \frac{4C_{\text{sym}}}{T} \left[\left(\frac{Z}{A}\right)_{1}^{2} - \left(\frac{Z}{A}\right)_{2}^{2} \right] = \frac{4C_{\text{sym}}}{T} \Delta.$$

Wuenschel, Phys. Rev. C 79, 061602(R) (2009)

Source Definition

- ⁸⁶Kr projectile + ⁶⁴Ni target = ¹⁵⁰Compound Nucleus
- ⁷⁸Kr projectile + ⁵⁸Ni target = ¹³⁶Compound Nucleus

Source Reconstruction

• Peripheral collisions \rightarrow Quasiprojectile (QP) & Quasitarget (QT)

- Reconstructed QP as source
- Distribution of QP sources (in N/Z of source)
- Better defines source

Source Reconstruction

• Peripheral collisions \rightarrow Quasiprojectile (QP) & Quasitarget (QT)

- Reconstructed QP as source
- Distribution of QP sources (in N/Z of source)
- Better defines source

Transition in Isoscaling

Wuenschel, Phys. Rev. C 79, 061602(R) (2009)

Evolution of Isoscaling

- Bin-to-Bin Isoscaling
 - Combine systems and divide into bins
 - Isoscaling with individual alphas and betas for each Z
 - Better resolution from better definition of the delta
- $^{\circ}~$ Better defined α and Δ should mean better defined C_{sym}

Improving Isoscaling

 Wuenschel used bins in N/Z, of width 0.06, and always compared bins 2 and 4

- But what if you changed the width, or range, in N/Z, or changed the bins that were being compared?
 - Bin widths: 0.02 0.28 in increments of 0.02, and 0.28-0.60 in increments of 0.04
 - All comparisons of Bins 1-5

$$\alpha = \frac{4C_{\rm sym}}{T} \left[\left(\frac{Z}{A} \right)_1^2 - \left(\frac{Z}{A} \right)_2^2 \right] = \frac{4C_{\rm sym}}{T} \Delta$$

Bin comparisons trend by bin separation Convergence of α and Δ for large bin widths

Improving the quality of the fit

N/Z of source

158829 1.173 0.1105

N/Z of source

Cyclotron Institute

The excitation energies of bin 1 are quite a bit higher than the other bins!

$$\alpha = \frac{4C_{\text{sym}}}{T}\Delta$$

E* is proportional to T² and a higher temperature would mean lower α

Bin 1 combinations are obviously off the line.

What We've Learned So Far

- Varying the source selection (bin width) changes the isoscaling
- Using a bin width of 0.18 (in N/Z) when comparing bins 5 and 2 will give the optimum results
- ° Some characteristic of bin 1 is causing a systematic difference in the α , shown on the α vs. Δ plot

Evolution of Isoscaling

Where we went next...

- ^o Examine Bin 1
 - Is the excitation energy of bin 1 different from the other bins?
- N/Z to N/A
 - N/Z has been used by convention
 - Technically, isoscaling should be in terms of concentration (N/A)

These are the N/Z bins used by Wuenschel in her isoscaling.

These are the corresponding N/A bins. Variations in the N/A bins can also be studied.

N/A bins of 0.020 width

Conclusions

- Source definition affects quality of isoscaling, alpha, C_{sym}
- Bin width of 0.18, comparison of bins 5/2 are optimal
- $^{\circ}$ Bin 1 has significantly higher excitation energy than the other bins, which affects α

Where do we go from here?

- Further exploration into excitation energy effects
- Possibly looking into the effect of free neutrons in the reconstruction

Acknowledgements

- SJY Group
- Cyclotron Institute
- National Science Foundation
- US Department of Energy
- ° YOU!

http://cyclotron.tamu.edu

Questions?

References

- ^o http://www.int.washington.edu/NNPSS/2007/Talks/Mukherjee.pdf
- ^o Tsang. Phys. Rev. C 64, 041603(R) (2001)
- ^o Wuenschel, Phys. Rev. C **79**, 061602(R) (2009)
- *Li, Nuc.Phy. A.* **834**. 509. (2010)
- ^o Tsang, Eur. Phys. J. A **30**, 129-139 (2006)

 \bigcirc

